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Two-dimensional thermal model of the finite-difference lattice Boltzmann method
with high spatial isotropy

Minoru Watari* and Michihisa Tsutahara
Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan

~Received 5 November 2002; published 26 March 2003!

The existing lattice Boltzmann method multispeed thermal models show a limited accuracy. This paper
proposes a two-dimensional multispeed thermal model for the finite-difference lattice Boltzmann method
~FDLBM!. To recover correct fluid equations, up to fourth orders of local flow velocity should be retained in
the local equilibrium distribution function and tensors of particle velocities should have up to seventh rank
isotropy. In the FDLBM, particle velocities can be selected independently from the lattice configuration.
Therefore, particle velocities of octagonal directions, which have up to seventh rank isotropic tensors, are
adopted. The proposed model was verified by two simulations. The model showed excellent numerical stability
in addition to strict accuracy.
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I. INTRODUCTION

The lattice Boltzmann method~LBM ! has become a pow
erful numerical tool for simulating fluid flows@1#. In the
LBM, there are two ways of handling thermal fluids. One
the so-called ‘‘multicomponent thermal model’’@2#, where
heat is handled as a different component from fluid. T
model characterizes the flow as a Boussinesq fluid. Ano
is the so-called ‘‘multispeed thermal model’’@3,4#, where
several particle velocities that have different speeds are u
While the multispeed thermal model is intended to correc
represent heat characteristics and compressibility, the e
ing models seem to have hidden error terms and sho
limited accuracy.

The finite-difference lattice Boltzmann method~FDLBM!
@5# was proposed in order to secure numerical stability an
apply nonuniform grids. In the LBM, the particle velocitie
are restricted to those that exactly link the lattice nodes
unit time. On the other hand, in the FDLBM as we do n
need to consider that constraint, we can select particle
locities independently from the lattice configuration. The
fore, we can construct a correct and numerically stable m
tispeed thermal model by adopting more isotropic parti
velocities. We propose in this paper a two-dimensio
FDLBM BGK ~single relaxation! thermal model based o
the above concept.

II. FINITE-DIFFERENCE LATTICE BOLTZMANN
METHOD

Below is a general description of the two-dimension
FDLBM thermal model. The evolution of the distributio
function f ki for the particle velocitycki is governed by the
following equation:

] f ki

]t
1ckia

] f ki

]r a
52

1

f
~ f ki2 f ki

(0)!, ~1!
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where subscriptk indicates a group of the particle velocitie
whose speed isck andi indicates the particle’s direction. Th
subscripta indicatesx or y component. The variablet is
time, r a is the spatial coordinate,f ki

(0) is the local equilibrium
distribution function, andf is the relaxation parameter. Th
macroscopic quantities, densityr, velocity ua , and internal
energye, are defined as

r5(
ki

f ki , ~2!

rua5(
ki

f kickia , ~3!

rS e1
u2

2 D5(
ki

f ki

ck
2

2
. ~4!

The local equilibrium distribution function is determine
to satisfy the following moment summation equations:

(
ki

f ki
(0)5r, ~5!

(
ki

f ki
(0)ckia5rua , ~6!

(
ki

f ki
(0)ckiackib5r~edab1uaub!, ~7!

(
ki

f ki
(0)ckiackibckig5r@e~uadbg1ubdga1ugdab!

1uaubug#, ~8!

(
ki

f ki
(0)

ck
2

2
5rS e1

u2

2 D , ~9!

(
ki

f ki
(0)

ck
2

2
ckia5ruaS 2e1

u2

2 D , ~10!
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(
ki

f ki
(0)

ck
2

2
ckiackib5rFeS 2e1

u2

2 D dab1uaubS 3e1
u2

2 D G .
~11!

By applying the Chapman Enskog expansion, the ab
formulation is shown to be equivalent, with no errors, to t
following fluid equations~Navier-Stokes equations!:

]r

]t
1

]

]r a
~rua!50, ~12!

]

]t
~rua!1

]

]r b
~ruaub1Pdab!

2
]

]r b
FmS ]ub

]r a
1

]ua

]r b
2

]ug

]r g
dabD G50, ~13!

]

]t FrS e1
u2

2 D G1
]

]r a
FruaS e1

u2

2
1

P

r D G
2

]

]r a
Fk8

]e

]r a
1mubS ]ub

]r a
1

]ua

]r b
2

]ug

]r g
dabD G50,

~14!

where pressureP, viscosity coefficientm, and heat conduc
tivity k8 have the following relations:

P5re, ~15!

m5ref, ~16!

k852ref. ~17!

TemperatureT is related with the internal energy by th
following equation (R is gas constant!:

T5e/R. ~18!

III. NEW FDLBM MODEL DERIVATION

The nth rank tensor for the group ofm particle velocities
is defined as

Ea1a2a3•••an

(n) 5(
i 51

m

cia1
cia2

cia3
•••cian

, ~19!

wherea1•••an indicates eitherx or y component. The tenso
is isotropic if it is invariant for the coordinate rotation an
the reflection. As for being isotropic, the odd rank tens
should vanish and the even rank tensors should be the su
all possible products of Kronecker delta@6#.

FIG. 1. Four groups of particle velocities.
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The tensors for four groups of particle velocities shown
Fig. 1 are summarized in Table I. Kronecker deltadab and
the sum of its products,Dabgx and Dabgxlt , are isotropic,
whereas extended Kronecker deltadabgx and dabgxlt are
anisotropic.

The odd tensors for uniformly distributed velocities a
shown to vanish. For even tensors, groups I and II yi
anisotropic tensors for the fourth rank and higher. Group
ensures isotropy up to the fourth rank, but not for high
ranks. However, group IV ensures isotropy up to the seve
rank.

The energy diffusion equation~11! contains up to fourth
order of flow velocityu. Consequently, we derive the loca
equilibrium distribution functionf ki

(0) as the polynomial form
of flow velocity from the Maxwellian distribution:

r

2pe
expF2

1

2e
~ckij2uj!

2G
5r

1

2pe
expS 2

1

2e
ck

2DexpF1

e S ckijuj2
u2

2 D G ,
~20!

retaining up to fourth order terms of flow velocity

f ki
(0)5rFkF S 12

u2

2e
1

u4

8e2D 1
1

e S 12
u2

2eD ckijuj

1
1

2e2 S 12
u2

2eD ckijckihujuh

1
1

6e3
ckijckihckizujuhuz

1
1

24e4
ckijckihckizckixujuhuzuxG , ~21!

where the parameterFk represents (1/2pe)exp@2(1/2e)ck
2#

and is a function ofe and ck . The local equilibrium distri-
bution function f ki

(0) contains the fourth rank tensor and th
momentum diffusion equation~8! contains the third rank ten
sor. Therefore, up to seventh rank tensor should be isotr
to recover the correct fluid equations.

When we apply the property that the odd tensors van
we obtain the following equations to determine the para
etersFk .

From Eq.~5!,

(
ki

Fk51, ~22!

(
ki

Fkckijckizujuz5eu2, ~23!

(
ki

Fkckijckizckihckixujuzuhux53e2u4. ~24!
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TABLE I. Tensors for four groups shown in Fig. 1dab51 if a5b and 0 otherwise,dabgx51 if a
5b5g5x and 0 otherwise,dabgxlt51 if a5b5g5x5l5t and 0 otherwise,Dabgx5dabdgx

1dagdbx1daxdbg , Dabgxlt5dabDgxlt1dagDbxlt1daxDbglt1dalDbgxt1datDbgxl . Kronecker delta
dab and the sum of its products,Dabgx andDabgxlt , are isotropic, whereas extended Kronecker deltadabgx

anddabgxlt are anisotropic. Theck is the speed of the group of velocities. The odd tensors for any group
zero ~isotropic!.

Group ( ickiackib ( ickiackibckigckix ( ickiackibckigckixckilckit

Group I 2ck
2dab 2ck

4dabgx 2ck
6dabgxlt

Group II 2ck
2dab ck

4Dabgx22ck
4dabgx ck

6Dabgxlt/622ck
6dabgxlt

Group III 3ck
2dab 3ck

4Dabgx/4 anisotropic
Group IV 4ck

2dab ck
4Dabgx ck

6Dabgxlt/6
le
the
ns.
From Eq.~6!,

(
ki

Fkckiackijuj5eua , ~25!

(
ki

Fkckiackijckizckihujuzuh53e2u2ua . ~26!

From Eq.~7!,

(
ki

Fkckiackib5edab , ~27!

(
ki

Fkckiackibckijckizujuz5e2~u2dab12uaub!, ~28!

(
ki

Fkckiackibckijckizckihckixujuzuhux

53e3u2~u2dab14uaub!. ~29!

From Eq.~8!,

(
ki

Fkckiackibckigckijuj5e2~uadbg1ubdga1ugdab!,

~30!

(
ki

Fkckiackibckigckijckizckihujuzuh

53e3u2~uadbg1ubdga1ugdab!16e3uaubug .

~31!

From Eq.~9!,

(
ki

Fk

ck
2

2
5e, ~32!

(
ki

Fk

ck
2

2
ckijckizujuz52e2u2, ~33!

(
ki

Fk

ck
2

2
ckijckizckihckixujuzuhux59e3u4. ~34!
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From Eq.~10!,

(
ki

Fk

ck
2

2
ckiackijuj52e2ua , ~35!

(
ki

Fk

ck
2

2
ckiackijckizckihujuzuh59e3u2ua . ~36!

From Eq.~11!,

(
ki

Fk

ck
2

2
ckiackib52e2dab , ~37!

(
ki

Fk

ck
2

2
ckiackibckijckizujuz53e3~u2dab12uaub!,

~38!

(
ki

Fk

ck
2

2
ckiackibckijckizckihckixujuzuhux

512e4~u4dab14u2uaub!. ~39!

If we further assume the application of group IV partic
velocities that have isotropic tensors up to seventh rank,
above 18 equations reduce to the following five equatio
From Eq.~22!,

(
ki

Fk51. ~40!

From Eqs.~23!, ~25!, ~27!, and~32!,

(
ki

Fkck
25

e

4
. ~41!

From Eqs.~24!, ~26!, ~28!, ~30!, ~33!, ~35!, and~37!,

(
ki

Fkck
45e2. ~42!

From Eqs.~29!, ~31!, ~34!, ~36!, and~38!,

(
ki

Fkck
656e3. ~43!
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From Eq.~39!,

(
ki

Fkck
8548e4. ~44!

Five speeds of particle velocities are necessary to sa
the above equations. We assume a rest particle (c050.0) and
four speeds of group IV particles whose speeds
c1 ,c2 ,c3 , andc4. Eqs. ~40!–~44! are easily solved to give
the following. The parametersFk are functions of
c1 ,c2 ,c3 ,c4 , and internal energye.

F15
1

c1
2~c1

22c2
2!~c1

22c3
2!~c1

22c4
2!

F48e426~c2
21c3

21c4
2!e3

1~c2
2c3

21c3
2c4

21c4
2c2

2!e22
c2

2c3
2c4

2

4
eG , ~45!

F25
1

c2
2~c2

22c3
2!~c2

22c4
2!~c2

22c1
2!

F48e426~c3
21c4

21c1
2!e3

1~c3
2c4

21c4
2c1

21c1
2c3

2!e22
c3

2c4
2c1

2

4
eG , ~46!

F35
1

c3
2~c3

22c4
2!~c3

22c1
2!~c3

22c2
2!

F48e426~c4
21c1

21c2
2!e3

1~c4
2c1

21c1
2c2

21c2
2c4

2!e22
c4

2c1
2c2

2

4
eG , ~47!

F45
1

c4
2~c4

22c1
2!~c4

22c2
2!~c4

22c3
2!

F48e426~c1
21c2

21c3
2!e3

1~c1
2c2

21c2
2c3

21c3
2c1

2!e22
c1

2c2
2c3

2

4
eG , ~48!

F05128~F11F21F31F4!. ~49!

As far as a simulation being stably conducted, the com
nation of valuesc1 ,c2 ,c3 , andc4 does not affect the accu
racy itself. We utilize this freedom to obtain the stably sim
lated range of temperature as wide as possible. Sev
criteria were tried and we finally concluded that followin
hypothesis has the closest relation with simulation stabil
‘‘Simulation is stable as far asF0.F1.F2.F3.F4.0.’’
Therefore, the following optimum problem was solved:

Under the condition 0,c1,c2,c3,c4 ,

determine c1 ,c2 ,c3 , and c4 ,

which maximizes ~eH2eL!/eM ,

for eL,e,eH , F0 /F1.1.1,

F1 /F2.1.1, ~50!

F2 /F3.1.1,
03630
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F3 /F4.1.1, and

F4.0 hold,

keeping eM5~eH1eL!/251.0,

whereeL , eH , andeM are, respectively, the lowest, the high
est, and the middle internal energy of a stable simulat
range.

The result of the optimization is the following. The mod
is expected to stably simulate flows for the temperat
range:e50.4;1.6.

~c0 ,c1 ,c2 ,c3 ,c4!5~0.0,1.0,1.92,2.99,4.49!, ~51!

eL50.4, eH51.6, ~eH2eL!/eM51.2. ~52!

IV. VERIFICATION OF THE NEW MODEL

We confirmed validity of the model by conducting nu
merical simulations. First, the speed of sound was measu
Second, the shear flow between the parallel walls~Couette
flow! was investigated.

The evolution equation~1! is solved by using the Eule
and the second upwind difference scheme. The distribu
function of next stepf ki

new is calculated as

f ki
new5 f ki2S ckix

] f ki

]x
1ckiy

] f ki

]y DDt2
1

f
~ f ki2 f ki

(0)!Dt,

~53!

] f ki

]x
55

3 f ki,I24 f ki,I 211 f ki,I 22

2Dx
if ckix>0

3 f ki,I24 f ki,I 111 f ki,I 12

22Dx
if ckix,0,

~54!

FIG. 2. Sound wave simulation. A plate divides fluids that ha
small differences in density. As the plate is removed, sound wa
~expansion or compression! propagate in both directions.

FIG. 3. Sound speed vs internal energy. The results are c
pared with the theoretical value:cs5A2e.
6-4
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] f ki

]y
55

3 f ki,J24 f ki,J211 f ki,J22

2Dy
if ckiy>0

3 f ki,J24 f ki,J111 f ki,J12

22Dy
if ckiy,0,

~55!

where the second suffixesI 22, I 21, I, I 11, and I 12
indicate the mesh nodes inx direction andJ22, J21, J,
J11, andJ12 in y direction.

A. Speed of sound

In a box, as shown in Fig. 2, a plate divides fluids th
have small difference in density. When the plate is remov
sound waves~expansion and compression! propagate. The
position of the pressure jump was measured to calculate
speed of sound. The results at various internal energy le
are shown in Fig. 3. The simulation was stably conducted
the range:e50.4;1.6. The speed of sound exactly agre
with the following theoretical value:

cs5A2e. ~56!

B. Couette flow

A sketch of the simulation is shown in Fig. 4. The upp
wall, which is H apart from the lower wall and has intern
energye2, starts to move with a speedU. The lower wall has
e1 and is at rest. The viscous shear stress transmits mom

FIG. 4. Couette flow simulation. The upper wall, which isH
apart from the lower wall and has an internal energye2, starts to
move with a speedU. The lower wall hase1 and is at rest.

FIG. 5. Horizontal speed distribution fore15e251.0 at various
instants:t540, 100, 200, 600, 2800.
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tum into the fluid and changes the horizontal speed pro
The horizontal speed distribution at various instants fore1
5e2 is shown in Fig. 5. The simulation result exactly agre
with the following analytical value:

u

U
5

y

H
2

2

p (
n51

`

expF2n2p2
mt

rH2GsinFnpS 12
y

H D G .
~57!

The analytical distribution of internal energy in a stea
state is given as

e5e11~e22e1!
y

H
1

m

2k8
U2

y

H S 12
y

H D . ~58!

Since the coefficientsm andk8 are given as Eqs.~16! and
~17!, respectively, the valuem/2k8 is constant (50.25).
Therefore, the distribution does not depend on the relaxa

FIG. 6. Internal energy at steady state forU50.1 ande15e2

51.0. The internal energy subtracted by linear distribution
shown. The relaxation parameter is changed:f50.05, 0.1,
0.2, 0.4. The results for allf overlap each other.

FIG. 7. Internal energy at steady state forU50.1 andf50.1.
The internal energy subtracted by linear distribution is shown. T
wall temperature is changed:e15e250.5,1.0,1.5. The results fo
all cases overlap each other.
6-5
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parameterf or on the wall’s temperature. The internal e
ergy subtracted by the linear distribution, which correspo
to the last term in Eq.~58!, will be shown.

Figure 6 shows the result for various relaxation para
eters. The result, which is independent off, conincides ex-
actly with the analysis. Figure 7, the result for various w
temperatures, also shows complete agreement with
analysis.

Finally, we conducted simulations fore1Þe2. The result
for various wall speeds and fore150.5 ande251.5 is shown
in Fig. 8. The result exactly agrees with the analytical so
tion.

V. COMPARISON WITH EXISTING THERMAL MODELS

We conducted Couette simulations using existing mu
speed thermal BGK LBM models in the same FDLB

FIG. 8. Internal energy at steady state for different wall tempe
tures:e150.5,e251.5, andf50.1. The internal energy subtracte
by linear distribution is shown. The wall speed is changed:U
50.1, 0.2, 0.3.

FIG. 9. Alexander’s model. Internal energy at steady state
U50.1 ande15e250.5. The internal energy subtracted by line
distribution is shown. The relaxation parameter is changedf
50.1, 0.2, 0.4. The result shows dependence onf, which contra-
dicts the analytical prediction.
03630
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scheme to compare them with the proposed model.
The model by Alexanderet al. 2D13V ~one rest particle

and two speeds of group III! @3#. They retain up to third
orders of local flow speed in the local equilibrium distrib
tion function. They use group III velocities~hexagonal! that
ensure only fourth rank tensor isotropy. As we showed in
model derivation, up to fourth order expansion and up
seventh rank isotropy are necessary to recover correct
equations. Therefore, in their model, error terms are hid
in the momentum and energy diffusions. Figure 9 shows
result for the variation of the relaxation parameter. The res
indicates the dependency on the relaxation parameter, w
contradicts the analysis. The result for various values of
wall temperature is shown in Fig. 10. The figure shows

-

r

FIG. 10. Alexander’s model. Internal energy at steady state
U50.1 andf50.1. The internal energy subtracted by linear dist
bution is shown. The wall temperature is changed:e15e2

50.3, 0.5, 0.7. The result shows dependence on the wall temp
ture, which contradicts the analytical prediction.

FIG. 11. Chen’s model. Internal energy at steady state forU
50.1 ande15e250.5. The internal energy subtracted by line
distribution is shown. The relaxation parameter is changed:f
50.05, 0.1, 0.2, 0.4. Although the model has been improved fr
Alexander’s model, the result still shows dependence onf, which
contradicts the analytical prediction.
6-6
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dependency on the wall temperature, which also contrad
the analysis. Those discrepancies are the reflection of
error terms described above.

The model by Chenet al.2D16V ~2 speeds of group I and
2 speeds of group II! @4,7#. They say that as they retain up
fourth orders of local flow speed and realize equivalent up
seventh rank tensor isotropy by mixing weighted group I a
group II velocities, their model recovers correct fluid equ
tions.

The result for various values of the relaxation parame
f is shown in Fig. 11. Although Chen’s model has been qu
improved from Alexander’s model, the model still yields a
erroneous solution forf,0.2. For f50.1, the result for
various values of the wall temperature is shown in Fig.
This figure indicates that, forf,0.2 ~low viscosity flow!,
the simulation yields an erroneous solution if the inter
energye diverts from 0.5. Consequently, the simulation f
e1Þe2, as shown in Fig. 13, although the average inter
energy is 0.5, gives distorted solutions if the difference
temperature between walls exceeds a certain range. Fu

FIG. 12. Chen’s model. Internal energy at steady state foU
50.1 andf50.1. The internal energy subtracted by linear dis
bution is shown. The wall temperature is changed:e15e2

50.3, 0.4, 0.5, 0.6, 0.7. The results fore50.4 and 0.6 and fore
50.3 and 0.7 overlap. The result shows dependence on the
temperature, which contradicts the analytical prediction.
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study are necessary where these discrepancies come fro

VI. CONCLUSIONS

A two-dimensional multispeed thermal model for th
FDLBM was proposed. To recover correct fluid equatio
up to fourth orders of local flow velocity should be retain
in the local equilibrium distribution function and the partic
velocities should have up to seventh rank isotropy. In
FDLBM, we can select particle velocities independen
from the lattice configuration. Therefore, we adopt parti
velocities of octagonal directions, which have up to seve
rank isotropic tensors. We verified the model conduct
flow simulations and compared it with the existing mode
While the existing multispeed thermal models give corr
answers in quite limited ranges of viscosity and internal
ergy, the model proposed in this paper gives correct answ
in wide ranges.

We would like to note that the proposed model has ca
bility in the high Reynolds number problems. In our app
cation study @8#, thermal cavity flow simulations off
50.0009 was successfully conducted.

all

FIG. 13. Chen’s model. Internal energy at steady state for
ferent wall temperatures:e150.3,e250.7 andf50.1. The internal
energy subtracted by linear distribution is shown. The wall spee
changed:U50.1, 0.2, 0.3. The model gives distorted solutions.
-
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