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Two-dimensional thermal model of the finite-difference lattice Boltzmann method
with high spatial isotropy
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The existing lattice Boltzmann method multispeed thermal models show a limited accuracy. This paper
proposes a two-dimensional multispeed thermal model for the finite-difference lattice Boltzmann method
(FDLBM). To recover correct fluid equations, up to fourth orders of local flow velocity should be retained in
the local equilibrium distribution function and tensors of particle velocities should have up to seventh rank
isotropy. In the FDLBM, particle velocities can be selected independently from the lattice configuration.
Therefore, particle velocities of octagonal directions, which have up to seventh rank isotropic tensors, are
adopted. The proposed model was verified by two simulations. The model showed excellent numerical stability

in addition to strict accuracy.
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I. INTRODUCTION where subscripk indicates a group of the particle velocities
whose speed is, andi indicates the particle’s direction. The
The lattice Boltzmann method BM) has become a pow- subscripta indicatesx or y component. The variable is
erful numerical tool for simulating fluid flow$1]. In the time,r, is the spatial coordinatéf(?) is the local equilibrium
LBM, there are two ways of handling thermal fluids. One isdistribution function, andp is the relaxation parameter. The
the so-called “multicomponent thermal mod€l2], where  macroscopic quantities, densipy velocity u,, and internal
heat is handled as a different component from fluid. Thisenergye, are defined as

model characterizes the flow as a Boussinesq fluid. Another
is the so-called “multispeed thermal mod€]3,4], where

several particle velocities that have different speeds are used.

While the multispeed thermal model is intended to correctly
represent heat characteristics and compressibility, the exist-
ing models seem to have hidden error terms and show a
limited accuracy.

The finite-difference lattice Boltzmann meth@eDLBM)
[5] was proposed in order to secure numerical stability and to
apply nonuniform grids. In the LBM, the particle velocities
are restricted to those that exactly link the lattice nodes in
unit time. On the other hand, in the FDLBM as we do not

P:% fiis (2

Pua:%: friChia s ©)
u? c?

p e+? :% fkiE. (4)

The local equilibrium distribution function is determined

need to consider that constraint, we can select particle ve® satisfy the following moment summation equations:

locities independently from the lattice configuration. There-
fore, we can construct a correct and numerically stable mul-
tispeed thermal model by adopting more isotropic particle
velocities. We propose in this paper a two-dimensional
FDLBM BGK (single relaxation thermal model based on
the above concept.

II. FINITE-DIFFERENCE LATTICE BOLTZMANN
METHOD

Below is a general description of the two-dimensional
FDLBM thermal model. The evolution of the distribution
function f; for the particle velocityc,; is governed by the
following equation:
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Eki: f=p, (5)
% f(k(i))ckia:pual (6)
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groupl  groupll  groupTd  groupTV The tensors for four groups of particle velocities shown in
Fig. 1 are summarized in Table I. Kronecker deftg; and
the sum of its productsd ,4,, andA 4, -, are isotropic,
whereas extended Kronecker deligg,, and d,4,,,, are

anisotropic.
The odd tensors for uniformly distributed velocities are
5 shown to vanish. For even tensors, groups | and Il yield
3e+ u_” anisotropic tensors for the fourth rank and higher. Group IlI
2 ensures isotropy up to the fourth rank, but not for higher
ranks. However, group IV ensures isotropy up to the seventh
(11 rank.
) . The energy diffusion equatiofll) contains up to fourth
By applying the Chapman Enskog expansion, the abovgrder of flow velocityu. Consequently, we derive the local
formulation is shown to be equivalent, with no errors, to thegqyilibrium distribution functiorf (9) as the polynomial form
following fluid equations(Navier-Stokes equatiojis of flow velocity from the Maxwellian distribution:

FIG. 1. Four groups of particle velocities.
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B @ B Y retaining up to fourth order terms of flow velocity
] u? d uz P s 4 5
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(14
where pressur®, viscosity coefficienfu, and heat conduc- i o
tivity «' have the following relations: * 6e? CkieCiinCrictelyUe
P=pe, (15 1
+ r4e4Cki§cki77ckilcki)(u§u77u§u)( , (21)
n=ped, (16)
k' =2ped. (17) where the parametd¥, represents (1/£e)exp[—(l/2e)cﬁ]

and is a function ok andcy. The local equilibrium distri-
TemperatureT is related with the internal energy by the bution functionf((’ contains the fourth rank tensor and the

following equation R is gas constait momentum diffusion equatiof8) contains the third rank ten-
sor. Therefore, up to seventh rank tensor should be isotropic
T=elR. (18)  to recover the correct fluid equations.
When we apply the property that the odd tensors vanish,
IIl. NEW FDLBM MODEL DERIVATION we obtain the following equations to determine the param-
etersk.
The nth rank tensor for the group oh particle velocities From Eq.(5),
is defined as
o m > Fe=1, (22)
n _ ki
Ea1a2a3~ ap T igl Cialciazcia3' o Cian! (19)
wherea; - - - a,, indicates eithek or y component. The tensor ; FiCrieCricUgly = e, (23
|

is isotropic if it is invariant for the coordinate rotation and
the reflection. As for being isotropic, the odd rank tensors
should vanish and the even rank tensors should be the sum of FLCuisCr +Cui Cui U:U-U-U. =3e2u? 24
all possible products of Kronecker deftd]. ; KkigEkIL ki kix g5 24
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TABLE I. Tensors for four groups shown in Fig. d,;,=1 if «=g and O otherwiseg,
1 if a=B=y=x=A=7 and 0 otherwise,A
+ 8oy Apnst 5Q_XAB7M_+ Senl gyyrt 0a:A g,y - Kronecker delta

are isotropic, whereas extended Kronecker délia,,

are anisotropic. The, is the speed of the group of velocities. The odd tensors for any groups are

=B=y=x and O otherwise,d,g, .=
+ 5“763X+ 560(5!37’ _ACYBVX)\T: ‘SaﬁA
dqp and the sum of its products,
and gy
zero (isotropig.
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Group ZiCiaCrip 2 CyiaCkigCriyChiy 2 CiiaCki gCkiyCkiy CkinCkir
Group | 20&5%/3 Zcﬁaaﬂw{ 20§6aﬂy)()\7'
Group Il 2C5 8,5 CRA wpyy— 2CkBapyy CRA gy /6= 2CE S gy
Group Il 3CE8up 3CkA gy /4 anisotropic
Group IV 4¢; 8,5 CRA gy CPA upyun /6
From Eq.(6), From Eq.(10),
ck
Eki: chkiackifufzeuaa (25) Ek: Fk?CkiaCki§u§=282ua, (35)
I
2,2 Ci
2 FiCkiaCiieChicCripUel U, = 3€2U2U,, (26) > Fi5 CliaCiieCuicCrinUsl U, =9€%u2u,.  (36)
ki = 2 7 7
From Eq.(7), From Eq.(11),
>F ) 2 o
ChinCkin=€0.,5, _
[ KKlatkdpT = ap @0 %‘4 Fk?CkiaCkiB_zez‘sa/Bv (37
> FChkiaCkisCkicCkicUsU = €2 (U2 8,5+ 2U,Up), (28) S E C_i —363(U25. .t D
i 20 P CuiaCuipCuieCiiclel; = 3€ (USS,51+2U,Up),
(38
% F1CukiaCkigCrigCkicChkinCikiyUeU U Uy .
k
2 Fk 5 CkiaCkisCkizCkizCkinCkiyUgU U Uy
=3€3U2(U25 5+ 4U,Up). (29 ko2
— 1ond/ 4 2
From Eq.(8), 12e*(u* 8,5+ 4UU,Up). (39

If we further assume the application of group IV particle
velocities that have isotropic tensors up to seventh rank, the

2 FiChiaCiifCuisCrigle =€ (Ua gy + Ugdyu Uy S,p), ; 0 SEV \
ki above 18 equations reduce to the following five equations.

(30

%: FCkiaCkisCriyCikizCkiCkinUeU U,

— 3,2 3
=3€°U%(U,05, 1 Ugd,,TU,0,5) +6€°UUgU, .

(31
From Eq.(9),
Ck
> Fy==¢6, (32)
ki
2
E Ck _9n2;,2
> FkEckigckigugug—Ze us, (33
2
Ck 3,4
% Fk?Ckingié’Cki”CkiXU§U§U7]uX:ge u-. (34

From Eq.(22),

%‘, F=1. (40)
From Eqs.(23), (25), (27), and(32),
% chﬁzg. (41)
From Egs.(24), (26), (28), (30), (33), (35), and(37),
% Fici=e?. (42)
From Eqgs.(29), (31), (34), (36), and(38),
% Fci=6e (43)
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From Eq.(39),

> Fcl=48e" (44)
ki

PHYSICAL REVIEW E 67, 036306 (2003

Pi1€

pz’e X

FIG. 2. Sound wave simulation. A plate divides fluids that have

Five speeds of particle velocities are necessary to satisfgmall differences in density. As the plate is removed, sound waves

the above equations. We assume a rest partigle 0.0) and

(expansion or compressippropagate in both directions.

four speeds of group IV particles whose speeds are

€1,Cy,C3, andc,. Eqgs.(40)—(44) are easily solved to give
are functions of

the

following. The parametersk,

€1,C»,C3,C4, and internal energg.

F4/F,>1.1, and

F,>0 hold,

N 21 el 6(2 3 )’ keeping ey=(ey+e. )/2=1.0,
ci(ci—c5)(ci—c3)(ci—cy) . '
wheree, , ey, andey, are, respectively, the lowest, the high-
22 22, 2.2 o c%c%cﬁ est, and the middle internal energy of a stable simulation
+(caC3+ 3y +Cicr)e"——, e, (45 range.
The result of the optimization is the following. The model
1 , s 2 s is expectgd4 to1 ztably simulate flows for the temperature
= - +ci+ range:e=0.4~1.6.
T GG | e e
20 (cp,Cq,C»,C3,C4)=(0.0,1.0,1.92,2.99,4.49 (51
+(c2c2+c2c?+c2cl)e?— e e (46)
3%4 4%1 1%3 4 ! _ _ _ —
e =04, ey=1.6, (ey—e)ley=1.2. (52
1 2 2 2\ a3
3:c2(c2—c2)(c2—c2)(02—c2) 48e*—6(cs+ci+cye IV. VERIFICATION OF THE NEW MODEL
R We confirmed validity of the model by conducting nu-
22 59, 5o s cicics merical simulations. First, the speed of sound was measured.
+(cyerteicatecy)e—— —e|, (47 second, the shear flow between the parallel willsuette
flow) was investigated.
1 The evolution equatioril) is solved by using the Euler
Fem S5 35 48*—6(ci+cs+cl)e’ and the second upwind difference scheme. The distribution
ca(ci—cp)(cz—c3)(cy—cs) function of next stedjt" is calculated as
2.2, 2.2 222050%Cg of of 1
+(cica+cacateier)e 4 ©p “8) i ="fi— Ckix(7—)I((I+Ckiya—;;I At_g(fki_f(k?))At,
_ (53
Fo=1-8(F;+F,+F3+F,). (49
As far as a simulation being stably conducted, the combi- 3fiin — A1t fin—2 e =0
nation of values,,c,,c3, andc, does not affect the accu- of 2AX Kix
racy itself. We utilize this freedom to obtain the stably simu- Tk (54)
lated range of temperature as wide as possible. Several 2 it — A1t fuine2 .
criteria were tried and we finally concluded that following —2AX if Cix<0,
hypothesis has the closest relation with simulation stability:
“Simulation is stable as far aB,>F;>F,>F3;>F,>0." 2.0

Therefore, the following optimum problem was solved:

=
W
T

Under the condition €c;<C,<C3<Cy4,

determine c¢q,C,,C3, and c,,

Sound speed c
s

e
n

which maximizes (ey—e.)/ey, o FDLBM simulation

— Theoretical value
for e <e<ey, Fo/F1>1.1, 0.0 0.5 10 L5 20
Internal energy e
Fi/F,>1.1, (50
FIG. 3. Sound speed vs internal energy. The results are com-
FolF3>1.1, pared with the theoretical value;= \2e.
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Y 0.0008 ;
T U B2 Watari et al.
u e 0.0006 |- i
O 0.0004 |- -
g X o b =005

a¢ =01
o =02
o¢ =04
—— Analysis

FIG. 4. Couette flow simulation. The upper wall, whichHs
apart from the lower wall and has an internal eneegy starts to
move with a speedl. The lower wall hae; and is at rest.

0.0002

Internal energy subtracted by linear distribution

3fia— 41t fiio2

of 2Ay it Ciy=0 00 Venioal%gsiﬁon y/H to
ki
W: 3f, - Af, e (55 FIG. 6. Internal energy at steady state tm_=o.1 an_de_l=g2 _
i,J kig+l " Tkidg+2 ¢ CLiv<0, =1.0. The internal energy subtracted by linear distribution is
—2Ay y shown. The relaxation parameter is changedl=0.05, 0.1,
0.2, 0.4. The results for alp overlap each other.
where the second suffixds-2, I-1, I, I+1, andl+2
indicate the mesh nodes indirection andJ—2, J—1, J,  tum into the fluid and changes the horizontal speed profile.
J+1, andJ+2 iny direction. The horizontal speed distribution at various instantsepr
=e, is shown in Fig. 5. The simulation result exactly agrees
A. Speed of sound with the following analytical value:
In a box, as shown in Fig. 2, a plate divides fluids that uy 22 ut y
have small difference in density. When the plate is removed, —=-_—— 2 ex;{ —n272—|sin nw( 1— ”
sound wavedexpansion and compressiopropagate. The U H 7= pH? H

position of the pressure jump was measured to calculate the (57)
speed of sound. The results at various internal energy levels ) o _ )

are shown in Fig. 3. The simulation was stably conducted for "€ analytical distribution of internal energy in a steady
the range:e=0.4~1.6. The speed of sound exactly agreesState IS given as

with the following theoretical value:

_ _ y & LY y
B. Couette flow Since the coefficienta and«’ are given as Eqg16) and

(17), respectively, the valueu/2x’ is constant €0.25).

A sketch of the simulation is shown in Fig. 4. The lJpperTherefore, the distribution does not depend on the relaxation

wall, which isH apart from the lower wall and has internal
energye,, starts to move with a speédl The lower wall has

. . . g 0.0008
e; and is at rest. The viscous shear stress transmits momen- % Watari et al. '
-
1.0 T P 2
o =40 5 0.0006 | -
- =100 £
-~ =200 -
2 o t=600 =
o =+ t=2800 £ 0.0004 4
Q
§" — Analysis g
3 05F 1 2 8 e=e,=0.5
2 2 0.0002 - A g=e=10 -
g g o e=e,=15
T = —— Analysis
5
g & 1 &
=00 0.5 1.0
Vertical position y/H
0.0 0.5 1.0
Vertical position y/H FIG. 7. Internal energy at steady state fdr=0.1 and¢=0.1.

The internal energy subtracted by linear distribution is shown. The
FIG. 5. Horizontal speed distribution fe;=e,=1.0 at various  wall temperature is changeé;=e,=0.5,1.0,1.5. The results for
instants:t= 40, 100, 200, 600, 2800. all cases overlap each other.
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0.008 T 0.0010
Watari et al. o U=0.1 Alexander et al.
A U=0.2 a 2
o U=0.3 A o
0.0008 |- o © -
0.006 | — Analysis - Y o

obo

T
[o 2]

0.0006
0.004

0.0004

0.002 o e 26220'3
A g=e,=0.5
o g =e,=0.7

—— Analysis

0.0002

1
0.5 1.0 | L
Vertical position y/H 0.0 0.5 1.0

Internal energy subtracted by linear distribution

Internal energy subtracted by linear distribution

<
<
fe

. Vertical position y/H
FIG. 8. Internal energy at steady state for different wall tempera-

tures:e;=0.5e,=1.5, and¢=0.1. The internal energy subtracted  FIG. 10. Alexander’s model. Internal energy at steady state for
by linear distribution is shown. The wall speed is changdd: U=0.1 and$=0.1. The internal energy subtracted by linear distri-
=0.1,0.2,0.3. bution is shown. The wall temperature is changeg=e,
=0.3,0.5,0.7. The result shows dependence on the wall tempera-

parameter$ or on the wall's temperature. The internal en-éure, which contradicts the analytical prediction.

ergy subtracted by the linear distribution, which correspond

to the last term in Eq(S8), will be shown. _ scheme to compare them with the proposed model.

Figure 6 shows the result for various relaxation param-  the model by Alexandeet al. 2D13V (one rest particle
eters. The result, Wh_ich i§ independentdaf conincid_es €X- and two speeds of group JI[3]. They retain up to third
actly with the analysis. Figure 7, the result for various wall 5 qers of |ocal flow speed in the local equilibrium distribu-
temperatures, also shows complete agreement with thg,, fynction. They use group Ill velocitiehexagonal that
analysis. _ _ ensure only fourth rank tensor isotropy. As we showed in the

Finally, we conducted simulations feq #e,. The result  o4e| derivation, up to fourth order expansion and up to
for various wall speeds and fe;=0.5 ande;=1.5is Shown  geyenth rank isotropy are necessary to recover correct fluid
in Fig. 8. The result exactly agrees with the analytical solu-gqations. Therefore, in their model, error terms are hidden
tion. in the momentum and energy diffusions. Figure 9 shows the
result for the variation of the relaxation parameter. The result
indicates the dependency on the relaxation parameter, which

We conducted Couette simulations using existing multi-contradicts the analysis. The result for various values of the
speed thermal BGK LBM models in the same FDLBM Wall temperature is shown in Fig. 10. The figure shows the

V. COMPARISON WITH EXISTING THERMAL MODELS

= 0.0010 = 0.0008
.% Alexander et al. ;g Chen et al. I
5 2
El n © E
A 0.0008 [ o - ;
5 a T 0.0006 F i
E 2 s 5
2 0.0006 | - z
2 2 0.0004 -
2 3
2 2
=0.1
::’0 o ¢ =0.1 %ﬁ 0.0002 | : z =82 -
B 0.0002F A fg‘i - & o ¢ =04
g o¢ =04 1 —  Analysis
5 —— Analysis b5 |
| , S 00 0.5 10
00 0.5 1.0 Vertical position y/H

Vertical position y/H
FIG. 11. Chen’s model. Internal energy at steady stateUor

FIG. 9. Alexander’s model. Internal energy at steady state for=0.1 ande;=e,=0.5. The internal energy subtracted by linear
U=0.1 ande;=e,=0.5. The internal energy subtracted by linear distribution is shown. The relaxation parameter is changgd:

distribution is shown. The relaxation parameter is changéd: =0.05,0.1, 0.2, 0.4. Although the model has been improved from
=0.1, 0.2, 0.4. The result shows dependenceporwhich contra-  Alexander’s model, the result still shows dependencebpnvhich
dicts the analytical prediction. contradicts the analytical prediction.
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g 0.0008 T g 0.008 r
k] Chen et al. g Chen et al. o U=0.1
£ £ a U=02
2 v % o U=03
0.0006 |- -1 0.006 |- —_ is 1
§ n % o § - Analysis
= 2 5
> < Sy
=] =]
B 0.0004} o @ o - T 0.004
g 0 g
=] Q 0.3 g
5 o e=e,=0. 2
2 o A ¢=e,=04 9 2
8 0.0002 | v e=e,=05 . B
§ . ; . el—ez—O.é o o 0.002
5 1=¢,=0. o
= o] el=62=0.7 2
E — Analysis g
= Cx 1 2 QL - -
= 00 0.5 1o 2 00 0.5 1.0
Vertical position y/H Vertical position y/H
FIG. 12. Chen's model. Internal energy at steady statelfor FIG. 13. Chen's model. Internal energy at steady state for dif-

=0.1 and¢=0.1. The internal energy subtracted by linear distri- ferent wall temperatures; =0.3g,=0.7 and¢=0.1. The internal
bution is shown. The wall temperature is changed=€;  energy subtracted by linear distribution is shown. The wall speed is
=0.3,0.4,0.5,0.6,0.7. The results fer-0.4 and 0.6 and foB  changediu=0.1, 0.2, 0.3. The model gives distorted solutions.
=0.3 and 0.7 overlap. The result shows dependence on the wall

temperature, which contradicts the analytical prediction. study are necessary where these discrepancies come from.

dependency on the wall temperature, which also contradicts
the analysis. Those discrepancies are the reflection of the
error terms described above. A two-dimensional multispeed thermal model for the
The model by Cheet al. 2D16V (2 speeds of group | and FDLBM was proposed. To recover correct fluid equations,
2 speeds of group)I[4,7]. They say that as they retain up to up to fourth orders of local flow velocity should be retained
fourth orders of local flow speed and realize equivalent up tan the local equilibrium distribution function and the particle
seventh rank tensor isotropy by mixing weighted group | andrelocities should have up to seventh rank isotropy. In the
group Il velocities, their model recovers correct fluid equa-FDLBM, we can select particle velocities independently
tions. from the lattice configuration. Therefore, we adopt particle
The result for various values of the relaxation parameterelocities of octagonal directions, which have up to seventh
¢ is shown in Fig. 11. Although Chen’s model has been quiteank isotropic tensors. We verified the model conducting
improved from Alexander’s model, the model still yields an flow simulations and compared it with the existing models.
erroneous solution fo<<0.2. For ¢=0.1, the result for While the existing multispeed thermal models give correct
various values of the wall temperature is shown in Fig. 12answers in quite limited ranges of viscosity and internal en-
This figure indicates that, fop<<0.2 (low viscosity flow, ergy, the model proposed in this paper gives correct answers
the simulation yields an erroneous solution if the internalin wide ranges.
energye diverts from 0.5. Consequently, the simulation for ~ We would like to note that the proposed model has capa-
e,#€,, as shown in Fig. 13, although the average internability in the high Reynolds number problems. In our appli-
energy is 0.5, gives distorted solutions if the difference incation study[8], thermal cavity flow simulations of¢
temperature between walls exceeds a certain range. Further0.0009 was successfully conducted.

VI. CONCLUSIONS
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